Studies on the dispersion states of Fe_2O_3 on γ -Al₂O₃ by means of Mössbauer spectroscopy and XRD

Youchang Xie, Xianping Xu, Biying Zhao, Youchi Tang Physical Chemistry Institute, Peking University, Beijing, China

and

Gongbao Wu

Institute of Mineral Geology, Beijing, China

Received 10 July 1991; accepted 15 January 1992

XRD and Mössbauer spectroscopy studies show that Fe $_2O_3/\gamma$ -Al $_2O_3$ made by impregnation-calcination method may have monolayer dispersed Fe $_2O_3$ and α -Fe $_2O_3$ crystallites. There is a threshold monolayer dispersion capacity. If the Fe $_2O_3$ loading is lower than the threshold, the Fe $_2O_3$ will disperse on the surface of γ -Al $_2O_3$ as a monolayer, then the sample will give an XRD pattern with no crystalline Fe $_2O_3$ peaks and a Mössbauer spectrum of a doublet with large quadruple splitting (1.11 mm/s). When the Fe $_2O_3$ loading is higher than the threshold, in addition to the monolayer dispersed Fe $_2O_3$, crystalline α -Fe $_2O_3$ will appear, then the sample will give an XRD pattern with crystalline α -Fe $_2O_3$ peaks and a Mössbauer spectrum with a quadrupole splitting doublet superimposed on a magnetic splitting sextuplet. Monolayer dispersion capacity obtained by quantitative XRD phase analysis and Mössbauer spectra analysis are consistent with each other, having the same value of 0.052 g Fe $_2O_3/100$ m² γ -Al $_2O_3$ surface.

Keywords: Monolayer dispersion; iron oxide on alumina; Mössbauer spectroscopy

1. Introduction

Supported oxide catalysts are potentially of great industrial significance. The dispersion states of oxides on supports are of importance to catalysis. Supported iron oxide has been studied by Mössbauer spectroscopy [1–7]. It has been reported that Fe_2O_3 supported on γ -Al₂O₃ [4–7] gives Mössbauer spectra of a quadrupole splitting doublet or a magnetic hyperfine splitting sextuplet superimposed on a doublet. The sextuplet is attributed to the bigger α -Fe₂O₃ crystallites which show collective magnetic excitation and the doublet is attributed to the small α -Fe₂O₃ crystallites (e.g. < 100 Å) which show superparamagnetic

behaviour due to the fast relaxation of the magnetic moments of the small particles [8,13].

In our previous work, it was found that many oxides and salts can disperse spontaneously onto the surface of supports with high specific surface to form a monolayer or submonolayer [9,10]. For an oxide dispersed on a support, there will be a threshold dispersion capacity. When the content of the oxide on the support is below the threshold, the oxide will be in a monolayer (or submonolayer) dispersion state. If the oxide content exceeds the threshold, the oxide will be present in both the monolayer dispersion state and the crystalline state. According to this point, Fe_2O_3 supported on γ -Al $_2O_3$ should have both the monolayer (or submonolayer) dispersed Fe_2O_3 and crystalline α -Fe $_2O_3$. The quadrupole splitting doublet Mössbauer spectra of Fe_2O_3 supported on γ -Al $_2O_3$ may be mainly contributed from the monolayer dispersed Fe_2O_3 instead of small α -Fe $_2O_3$ crystallites. The aim of this paper is to prove these predictions, and clarify the states of Fe_2O_3 supported on γ -Al $_2O_3$.

2. Experimental

 γ -Al₂O₃, with B.E.T. surface area of 233 m²/g, was used as the support. The support was impregnated with a certain amount of 1 N ferric nitrate solution which contains an equivalent oxalic acid to protect the Fe³⁺ ions from hydrolysis in heating. After the impregnation for 3 hours, the precursor was dried under an infrared lamp and calcinated at 500°C for 20 hours to decompose the nitrate and oxalate to get the Fe₂O₃/ γ -Al₂O₃ samples.

The Mössbauer adsorption spectra were obtained with an Elscint AME-5 Mössbauer spectrometer. The source was 30 mCi 57 Co in a palladium matrix at room temperature and the adsorber was at a temperature ranging from room temperature to liquid nitrogen temperature. The source was moving at a constant acceleration with respect to the adsorber within a velocity range of ± 12 mm/s. The mode of operation was multichannel scaling with 512 recording channels. The baseline counts per channel were $0.5-1.5\times10^6$. Powdered sample was mixed with polyethylene powder and put in a thin winder sample box made of lucite. The thickness of the sample was 5-7 mg natural Fe/cm². A high purity α -iron foil was used to calibrate the velocity scale and to determine the zero-velocity position.

The XRD phase analysis was carried out on a BD-80 diffractometer with $\text{CuK}\alpha$ radiation, Ni filter and a scintillation counter.

3. Results and discussion

XRD study: fig. 1 shows the XRD patterns of the Fe_2O_3/γ - Al_2O_3 samples as well as α - Fe_2O_3 and γ - Al_2O_3 . For the sample with low Fe_2O_3 loading (0.053 g

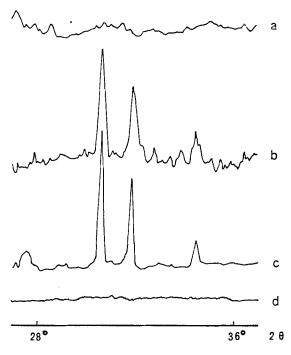


Fig. 1. XRD patterns of $\text{Fe}_2\text{O}_3/\gamma\text{-Al}_2\text{O}_3$ system. (a) 0.053 g $\text{Fe}_2\text{O}_3/\text{g}$ $\gamma\text{-Al}_2\text{O}_3$. (b) 0.29 g $\text{Fe}_2\text{O}_3/\text{g}$ $\gamma\text{-Al}_2\text{O}_3$. (c) $\alpha\text{-Fe}_2\text{O}_3$. (d) $\gamma\text{-Al}_2\text{O}_3$.

 $Fe_2O_3/g \gamma-Al_2O_3$), its pattern (fig. 1a) gives no peaks of crystalline α - Fe_2O_3 (see fig. 1c) and is similar to the pattern (fig. 1d) of γ -Al₂O₃. It indicates that the Fe₂O₃ disperses on the surface of γ -Al₂O₃ as a monolayer [9]. For the sample with higher Fe₂O₃ loading (0.29 g Fe₂O₃/g γ -Al₂O₃), its pattern (fig. 1b) has peaks of α -Fe₂O₃. It indicates the presence of the crystalline phase of α -Fe₂O₃ in addition to the monolayer dispersed Fe₂O₃. From the peak area of α -Fe₂O₃ the amount of crystalline α -Fe₂O₃ in the samples can be obtained [11]. Fig. 2 gives the amount of crystalline α -Fe₂O₃ obtained by the XRD quantitative phase analysis as a function of the total amount of Fe₂O₃ in the samples. In the figure, we can find a threshold at 0.12 g Fe₂O₃/g γ -Al₂O₃, corresponding to a critical dispersion capacity of 0.052 g Fe₂O₃/100 m² γ-Al₂O₃ surface. If we assume that the bigger ions, O²⁻, from Fe₂O₃ form a close-packed layer on the surface of γ-Al₂O₃, meanwhile the smaller ions, Fe³⁺, occupy the interstices formed by O^{2-} ions of Fe_2O_3 and the surface of γ -Al₂O₃. By taking the Pauling radius 1.40 Å for the O²⁻ion, we can get a close-packed monolayer capacity of 0.13 g Fe₂O₃/100 m² surface, which is higher than the experimental dispersion capacity of 0.052 g Fe₂O₃/100 m² surface of γ -Al₂1O₃. It indicates that the Fe_2O_3 disperses on the surface of γ -Al₂O₃ as a submonolayer. Because the surface sites of γ -Al₂O₃ are heterogeneous, it is possible that only a part of the

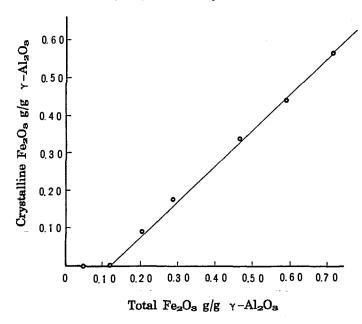


Fig. 2. XRD phase quantitative analysis result of Fe_2O_3/γ -Al₂O₃ system. The threshold is 0.12 g $Fe_2O_3/g \gamma$ -Al₂O₃.

surface sites are energetically and geometrically favorable for the combination with the ions of Fe_2O_3 .

4. Mössbauer spectroscopy study

Fig. 3 shows the Mössbauer spectra of Fe_2O_3/γ - Al_2O_3 samples as well as α - Fe_2O_3 at room temperature. Fig. 3a is a typical magnetic hyperfine splitting sextuplet spectrum of crystalline Fe_2O_3 . Fig. 3b is the Mössbauer spectrum of the sample with lower Fe_2O_3 loading (0.053 g Fe_2O_3/g γ - Al_2O_3). It is different from that of the crystalline α - Fe_2O_3 (fig. 3a) and shows a doublet with large quadrupole splitting (QS = 1.11 mm/s) and different isomer shift (IS = 0.33 mm/s), in comparison with the α - Fe_2O_3 (IS = 0.38, QS = -0.11 mm/s). The amount of Fe_2O_3 in this sample is below the monolayer dispersion threshold obtained by XRD, so the Fe_2O_3 appears as a monolayer dispersion state. The Fe^{3+} ions on the surface of γ - Al_2O_3 will have a highly asymmetrical environment and feel a strong electric field gradient, therefore give a high quadrupole splitting value (QS = 1.11 mm/s) much larger than that of Fe^{3+} in bulk phase α - Fe_2O_3 (QS = -0.11 mm/s).

Fig. 3c is the Mössbauer spectrum of a sample with higher Fe_2O_3 loading (0.29 g Fe_2O_3/g γ -Al₂O₃). The amount of supported Fe_2O_3 in the sample is beyond the threshold of monolayer dispersion. So not only monolayer dispersed

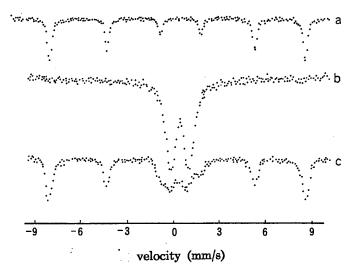


Fig. 3. The Mössbauer spectra of $\text{Fe}_2\text{O}_3/\gamma\text{-Al}_2\text{O}_3$ system. (a) $\alpha\text{-Fe}_2\text{O}_3$. IS = 0.38 mm/s, QS = -0.11 mm/s. (b) 0.053 g $\text{Fe}_2\text{O}_3/\text{g}$ $\gamma\text{-Al}_2\text{O}_3$. IS = 0.33 mm/s, QS = 1.11 mm/s. (c) 0.29 g $\text{Fe}_2\text{O}_3/\text{g}$ $\gamma\text{-Al}_2\text{O}_3$.

 Fe_2O_3 but also crystalline α - Fe_2O_3 are present in the sample. Its Mössbauer spectrum consists of both doublet with large quadrupole splitting and a magnetic splitting sextuplet.

The relative content of monolayer dispersed Fe_2O_3 and crystalline α - Fe_2O_3 in the sample can be determined from the area of the quadrupole splitting doublet and the magnetic splitting sextuplet. Fig. 4 gives the amount of monolayer dispersed Fe_2O_3 (plot b) and crystalline α - Fe_2O_3 (plot a), respectively as a function of the total Fe_2O_3 in the Fe_2O_3/γ - Al_2O_3 samples. Both the plots a and b have turning points at 0.12 g Fe_2O_3/g γ - Al_2O_3 , corresponding to the monolayer dispersion capacity. It is the same as that obtained by the XRD phase quantitative analysis mentioned above, and strongly supports the monolayer dispersion model.

It has been reported that small α -Fe₂O₃ particles (< 100 Å) can also show only quadrupole splitting spectra at room temperature owing to the superparamagnetism as mentioned before [8,13], but their magnetic splitting sextuplet spectra can appear as the temperature was decreased. So that only the quadrupole splitting doublet appears at room temperature is not enough for proving that the Fe₂O₃ is dispersed in the form of a monolayer. In order to further confirm that the quadrupole splitting doublet comes from the monolayer dispersed Fe₂O₃ instead of small crystallite α -Fe₂O₃, the Mössbauer spectrum of the low loading sample, 0.053 g Fe₂O₃/g γ -Al₂O₃, was measured at liquid nitrogen temperature (-195.8°C) and shown in fig. 5b. It is also a doublet similar to the spectrum obtained at room temperature (fig. 5a). Only the signal to noise ratio is improved in the spectrum because the recoilless fractions

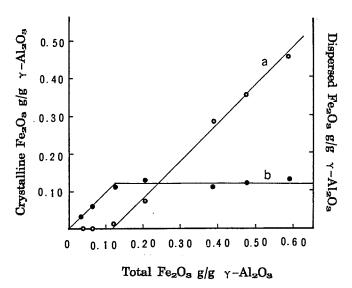


Fig. 4. Mössbauer quantitative analysis results of monolayer dispersed Fe_2O_3 and crystalline α - Fe_2O_3 . (a) Relationship between the amount of crystalline α - Fe_2O_3 and total Fe_2O_3 . (b) Relationship between the amount of monolayer dispersed Fe_2O_3 and total Fe_2O_3 .

become larger when the temperature is lower, but the magnetic hyperfine splitting sextuplet does not appear. It confirms that only monolayer dispersed Fe_2O_3 is present in the sample. We have also measured the Mössbauer spectrum of the sample with higher loading, 0.29 g $\text{Fe}_2\text{O}_3/\text{g}~\gamma\text{-Al}_2\text{O}_3$, at liquid

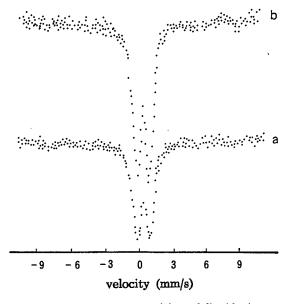


Fig. 5. Mössbauer spectra at room temperature (a), and liquid nitrogen temperature (b), of a sample: $0.053 \text{ g Fe}_2\text{O}_3/\text{g }\gamma\text{-Al}_2\text{O}_3$.

nitrogen temperature, and found that the area ratio of the magnetic splitting sextuplet to the quadrupole splitting doublet was the same as that obtained at room temperature. It confirms the coexistence of both monolayer dispersed Fe_2O_3 and crystalline α - Fe_2O_3 in the sample.

5. Conclusion

The study on ${\rm Fe_2O_3/\gamma\text{-}Al_2O_3}$ system by means of XRD and Mössbauer spectroscopy has proved that ${\rm Fe_2O_3}$ can disperse on the surface of $\gamma\text{-}{\rm Al_2O_3}$ as a monolayer. The monolayer dispersion capacity obtained by Mössbauer and XRD quantitative phase analysis is the same and is 0.052 g ${\rm Fe_2O_3/100~m^2}$ $\gamma\text{-}{\rm Al_2O_3}$ surface area. When ${\rm Fe_2O_3}$ loading is below this threshold, the ${\rm Fe_2O_3}$ in the samples will be in a state of monolayer dispersion, and give Mössbauer spectra of a doublet with large quadrupole splitting (1.11 mm/s). When ${\rm Fe_2O_3}$ loading exceeds the threshold, the samples will have both the monolayer dispersed ${\rm Fe_2O_3}$ and the crystalline $\alpha\text{-}{\rm Fe_2O_3}$ and give Mössbauer spectra with a quadrupole splitting doublet superimposed on a magnetic splitting sextuplet.

Acknowledgment

The authors acknowledge China's National Natural Science Foundation for generous support of this work.

References

- [1] W. Kundig, H. Bommel, G. Constabaris and R.H. Lindquist, Phys. Rev. 142 (1966) 327.
- [2] W. Kundig, K.J. Ando, R.H. Lindquist and G. Constabaris, Czech. J. Phys. B17 (1967) 467.
- [3] J. Phillips, Y. Chen and J.A. Dumesic, Catal. Characterization Science 43 (1985) 520.
- [4] Ding Ying-Ru, Yen Qi-Jie, Hsia Yuan-Fu, Jin Yong-Shu and Qiu Jin-Heng, Mössbauer Spectroscopy and its Applications 29 (1981) 610.
- [5] T. Yoshioko, J. Koezuka and H. Ikoma, J. Catal. 16 (1970) 264.
- [6] Jr. M.C. Hobson and H.M.J. Gager, J. Catal. 16 (1970) 254.
- [7] Sun Yao and Ding Ying-Ru, J. Catal. (Chinese) 5 (1984) 123, 130, 228.
- [8] A.M. van de Kraan, Phys. Stat. Sci. 18A (1973) 215.
- [9] Xie, Y.C. and Tang, Y.Q., Adv. Catal. 37 (1990) 1.
- [10] Xie, Y.C., Yang, N.F., Liu, Y.J. and Tang, Y.Q., Sci. Scin., Ser. B (Chin. Ed.) (1982) 673; Sci. Sin., Ser. B (Engl. Ed) 26 (1983) 337.
- [11] Xie, Y.C., Gui, L.L., Liu, Y.J., Zhao, B.Y., Yang, N.F., Guo, Q.L., Duan, L.Y., Huang, H.Z., Cai, X.H. and Tang, Y.Q., in: *Proc. Int. Congr. Catal.*, 8th 5 (1984) 147.
- [12] Xie, Y.C., Gui, L.L., Liu, Y.J., Zhang, Y.F., Zhao, B.Y., Yang, N.F., Guo, Q.L., Duan, L.Y., Huang, H.Z., Cai, X.H., and Tang, Y.Q., in: *Adsorption and Catalysis on Oxide Surface*, eds. M. Che and G.C. Bong (Elsevier, Amsterdam, 1985) p. 139.